Memory-reduction Method for Pricing American-style Options under Exponential Lévy Processes
نویسندگان
چکیده
This paper concerns the Monte Carlo method in pricing American-style options under the general class of exponential Lévy models. Traditionally, one must store all the intermediate asset prices so that they can be used for the backward pricing in the least squares algorithm. Therefore the storage requirement grows like O(mn), where m is the number of time steps and n is the number of simulated paths. In this paper, we propose a simulation method where the storage requirement is only of order O(m + n). The total computational cost is less than twice of that of the traditional method. For machines with limited memory, one can now enlarge m and n to improve the accuracy in pricing the options. In numerical experiments, we illustrate the efficiency and accuracy of our method by pricing American options where the log-prices of the underlying assets follow typical Lévy processes such as Brownian motion, lognormal jump-diffusion process, and variance gamma process.
منابع مشابه
DELFT UNIVERSITY OF TECHNOLOGY REPORT 11-11 Efficient Pricing of Asian Options under Lévy Processes based on Fourier Cosine Expansions Part I: European-Style Products
We propose an efficient pricing method for arithmetic, and geometric, Asian options under Lévy processes, based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European–style and American–style Asian options, and for discretely and continuously monitored versions. In the present paper we focus on European–style Asian options; American-style ...
متن کاملEfficient Pricing of European-Style Asian Options under Exponential Lévy Processes Based on Fourier Cosine Expansions
We propose an efficient pricing method for arithmetic and geometric Asian options under exponential Lévy processes based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European-style and American-style Asian options and for discretely and continuously monitored versions. In the present paper we focus on the European-style Asian options. The...
متن کاملA Fast and Accurate Fft-based Method for Pricing Early-exercise Options under Lévy Processes
A fast and accurate method for pricing early exercise and certain exotic options in computational finance is presented. The method is based on a quadrature technique and relies heavily on Fourier transformations. The main idea is to reformulate the well-known risk-neutral valuation formula by recognising that it is a convolution. The resulting convolution is dealt with numerically by using the ...
متن کاملPricing Barrier and Bermudan Style Options Under Time-Changed Lévy Processes: Fast Hilbert Transform Approach
We construct efficient and accurate numerical algorithms for pricing discretely monitored barrier and Bermudan style options under time-changed Lévy processes by applying the fast Hilbert transform method to the log-asset return dimension and quadrature rule to the dimension of log-activity rate of stochastic time change. Some popular stochastic volatility models, like the Heston model, can be ...
متن کاملOption Pricing with Lévy-Stable Processes
In this paper we show how to calculate European-style option prices when the log-stock and stock returns processes follow a symmetric Lévy-Stable process. We extend our results to price European-style options when the log-stock process follows a skewed Lévy-Stable process.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010